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Abstract
A characteristic feature of the physics in transition-metal oxides is that the
charge, spin, and lattice degrees of freedom are strongly coupled. The key to
understanding these strong mutual couplings is the orbital degree of freedom
(ODF), which plays a crucial role in controlling the phases and various physical
properties. We have been working on TMO extensively in recent years.
Examples are FeO and MnO, La1−xSrxMnO3, Ca2−xSrxRuO4, Sr2FeMoO6,
and SrTiO3, not only for the bulk but also for the surfaces. A review will
be given in this article, with concentration on the strong coupling between
the structural distortion and the magnetism mediated by ODF. Most of the
studies were conducted by our STATE (simulational tool for atom technology)
code, which is particularly designed for the transition-metal systems. Some
particular aspects of STATE code, such as LDA + U method and virtual crystal
approximation, will be also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transition-metal oxides (TMO) which form an important category of materials in
fundamental physics as well as in technological applications have been attracting intense
attention from the condensed matter community [1]. They exhibit a rich variety of structural,
magnetic, transport, and optical properties. For example, ferroelectricity of titanates and high
Tc superconductivity of cuprates have been extensively studied and widely used in practice.
More recently, the negative colossal magnetoresistance (CMR, i.e., ‘more than giant’ decrease
of resistivity on application of magnetic field) in manganites [2, 3] and the unconventional
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Figure 1. A schematic description for the strong couplings among some degrees of freedom
existing in TMO. The ODF plays crucial roles in mediating these couplings.
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Figure 2. Various magnetic structures are schematically shown. From left to right, FM, A-type
antiferromagnetic (A–AF) and so on.

spin-triplet p-wave superconductivity in ruthernates [4] set up additional challenges. All
these physical properties can be controlled in various ways: ionic radii, electron or hole
doping, magnetic or electric field, temperature, pressure, photoexcitation, and so on, providing
possibility of wide practical applications.

It is interesting to note that the basic concepts needed to understand various phenomena
are mostly rather old. For example, double exchange (DE) [5], super exchange (SE) [6],
cooperative Jahn–Teller (JT) effect [7] and dynamical JT effect [8–10] form a basic set of
concepts associated with the CMR effect in doped manganites. An important aspect in
the recent development in the physics of TMO is to realize that the combination of these
old concepts can produce a variety of interesting and often unexpected phenomena. While
these concepts form a basis, a new view point has been established to understand and predict
phenomena in a unified way. It is now realized that the strong coupling among charge, spin,
and lattice degrees of freedom in TMO are responsible for the rich physics behind and that the
key ingredient controlling these strong couplings is the orbital degree of freedom (ODF) [2,11]
(see figure 1). The ODF represents the freedom in orbital occupation under various crystal
environments for the open shell systems. A typical example where ODF plays a crucial role is
LaMnO3 whose ground state is an A-type antiferromagnetic (AF) insulator. (For the definition
of various magnetic structures like ferromagnetic (FM), A-, C-, and G-type AF states, refer to
figure 2.) The nominal electronic configuration of Mn in LaMnO3 can be expressed as Mn3+

(t3
2g↑e1

g↑), with the Fermi level lying in the majority spin eg bands. In the cubic symmetry, two
eg states are degenerate and the half filling of eg states in LaMnO3 provides us with a typical
ODF problem. It is believed that the A–AF ordering of LaMnO3 is accompanied with orbital
ordering (OO), which is stabilized by cooperative JT distortion. In this orbital ordered state,
two kinds of eg orbitals, 3x2 − r2 and 3y2 − r2, are alternately occupied at neighbouring Mn3+

sites in the ab-plane.
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The ODF is important because it can mediate various couplings (see figure 1). For example,
it mediates the coupling between structural distortion and magnetism in TMO. Magnetic field
directly controls the magnetic ordering, which then affects the OO through hybridization
between neighbouring d orbitals. As the lattice is strongly coupled with ODF, magnetic field
can indirectly affect the lattice. Conversely magnetic properties can be indirectly controlled
by the lattice distortion via ODF. Although magnetism can affect the lattice through the spin–
orbit coupling, the above mechanism for the coupling between magnetism and lattice is more
pronounced.

One of the reasons why the OO did not play a major role in physics was that the direct
experimental observation of the OO used to be difficult. A new experimental technique called
anomalous resonant x-ray scattering was recently developed to study the OO and applied to
several systems [12]. Nevertheless, it is still argued that the resonant x-ray scattering measures
the lattice distortion associated with the OO rather than the OO itself. Under such experimental
situations, the first-principles electronic structure calculation serves as a powerful tool in the
study of the OO. The usefulness of the method in a variety of environments comes from
the combination of several important methodological processes. First, the Car–Parrinello
method [13] based on the plane-wave basis provides us with a very accurate way to calculate
the total energy and forces, enabling us to optimize the structure. Second, the ultra-soft
pseudopotential (PP) scheme [14] makes it possible to treat efficiently the system including
hard core elements like oxygen and transition-metal elements. Thirdly, the implementation of
iterative diagonalization schemes such as the residual minimization (RMM), direct inversion
in the iterative subspace (DIIS) method [15], and the parallelization based on message passing
interface (MPI) make the calculations possible even for large systems. In the case of TMO,
several other techniques will also be necessary. The extensions to go beyond local density
approximation (LDA) and generalized gradient approximation (GGA) [16] are sometimes
required, because TMO systems are generally categorized into strongly correlated systems.
For this purpose, a technique called LDA + U [17] can provide us with help, particularly for
insulating systems. In the LDA + U formalism, the strong correlation between localized
electrons is explicitly taken into account through the screened effective on-site electron–
electron interaction U eff . To take account of the doping effect without using supercell, the
virtual crystal approximation (VCA) will be useful, in which the doped system is simulated with
a virtual crystal consisting of virtual atoms whose definition will be given later. All the above
techniques are included in the code called STATE (simulational tool for atom technology),
which has been used extensively in our studies.

We have been working on the TMO systems extensively in recent years. Examples are
FeO and MnO [18, 19], La1−xSrxMnO3 [20], Ca2−xSrxRuO4 [21, 22], Sr2FeMO6 (M = Mo,
W and Re) [23], and SrTiO3 [24]. In this article, we will discuss three examples to show the
strong coupling between the structural distortion and magnetism mediated by ODF. First, we
will demonstrate that the magnetic states in La1−xSrxMnO3 can be actually controlled by the
lattice distortion via ODF. Second, we will discuss the magnetic and structural properties of
ruthenates for both the bulk and the surfaces. Finally, we will discuss the oxygen vacancy
effects on the surface of SrTiO3.

2. Methodology

2.1. STATE code

Most of our calculations were done by using our STATE code, which has been carefully
designed so that particular efficiency can be achieved for TMO systems. The basic
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Figure 3. A demonstration for the convergence of self-consistent calculations by using the STATE
code. We use the FM cubic perovskite La0.5Sr0.5MnO3 as an example.

methodology employed in the code is the standard first-principles method based on the plane-
wave PP method. The particularity of STATE comes from the combination of the following
techniques.

(i) We use the ultra-soft PP [14] technique to reduce the cutoff energy required for the wave-
function expansion. It is generally true that this technique can reduce the cutoff energy
by a factor of 2–3, compared with the norm-conserving PP [25].

(ii) We use the linear tetrahedron method with the curvature correction [26] for the reciprocal
space integration. The shift of sampling k-points is allowed so that further reduction of
computational efforts can be achieved.

(iii) For the iterative diagonalization of the Kohn–Sham Hamiltonian, two basic schemes
were adopted. They are the block-Davidson scheme (DAV) [27] and the RMM-DIIS
method [15]. The DAV method is a very accurate and useful scheme when convergence
is hard to achieve with other methods, although it is not so efficient for large systems. It
can usually be used as a reference scheme, or be used for small systems. The RMM-DIIS
method is an efficient method especially suitable for large systems.

(iv) We implemented the LDA + U method in our STATE code so that we can treat some
strongly correlated systems for which both LSDA and GGA fail in describing their ground
state properties.

(v) We implemented VCA to treat the systems with doping.
(vi) The STATE code is fully parallelized by MPI. Tests have been done for various super

computers.

As the techniques (i)–(iii) and (vi) are standard nowadays, in the following subsections
we will mostly concentrate on the details of (iv) and (v) in STATE. Finally, to just demonstrate
the efficiency of STATE, in figure 3 we show the convergence of self-consistent calculations
for the FM cubic perovskite La0.5Sr0.5MnO3, which is a typical example of CMR materials. It
is clear that both the DAV method and the RMM-DIIS method achieve very fast convergence.

2.2. LDA + U method in plane-wave pseudopotential scheme

In the LDA + U method, the Coulomb interaction between electrons is explicitly taken into
account in the subspace of localized orbitals. The implementation of the LDA + U method in
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the plane-wave PP scheme was given in [28]. Here we will give explicit expressions for the
case where the U eff parameter may depend not only on the kind of atoms but also on orbitals
of the same atom. Following the prescription given in [28], the total energy ELDA+U is given
by the corresponding LDA total energy ELDA plus the Hubbard-like interaction energy EU

between the localized electrons with subtraction of the double counting part Edc,

ELDA+U[ρσ , nσI,m] = ELDA[ρσ ] + EU[nσI,m] − Edc[Nσ
I ]

= ELDA[ρσ ] + 1
2

{ ∑
I,m,σ

U eff
I,m(n

σ
I,m − nσI,mn

σ
I,m)

}
(1)

where ρσ is the charge density of the Kohn–Sham states with spin σ and nσI,m are occupation
numbers for the localized orbitals, which are obtained by diagonalizing the density matrix
defined for the localized orbitals. I , m and σ are the indexes for atom, orbital and spin,
respectively. NI = ∑

m,σ n
σ
I,m is the total number of electrons for the occupied local orbitals

on atom I .
The Kohn–Sham equation in the LDA + U scheme is then given by,

Ĥ LDA+U|�σ
k,i〉 = εσk,i Ŝ|�σ

k,i〉 (2)

with

Ĥ LDA+U = Ĥ LDA +
∑
I,m

U eff
I,m

(
1

2
− nσI,m

)
δnσI,m

δf σ
k,i�

σ∗
k,i

(3)

where �σ
k,i is the self-consistent Kohn–Sham wavefunction, εσk,i is the corresponding eigen-

energy, and f σ
k,i is its occupation number. k and i are indexes for the wave numbers and bands

respectively. Ŝ is the Hermitian overlap operator as defined in the ultra-soft PP formalism.
Ambiguity exists in the choice of localized orbitals, especially in the case of using the

plane-wave basis method. For those methods based on the local basis like LMTO (linear-
muffin-tin orbital), it is natural to use the basis orbitals as the localized orbitals. However, in
the plane-wave basis method, the definition of localized orbital is nontrivial. Following the
idea in [28], a truncated pseudo-atomic wavefunction is chosen as the localized orbital to which
U eff is applied. In this sense, the definition is a bit artificial and the localized orbitals depend
on the choice of parameters for truncation. However, the pseudo-atomic wavefunctions are
obtained in the atomic calculation and do not depend on the crystal structure.

The LDA + U approach described above provides us with a useful and simple way to study
strongly correlated systems, although it is semi-empirical in principle. A crucial problem in
the practical LDA + U calculations is the choice of U eff . Generally two ways are followed to
estimateU eff . First, U eff can be directly calculated by using the constrained LDA method [29].
However, it is not so meaningful to take this approach in the plane-wave method because of
some arbitrariness in the definition of localized orbitals. The second way is to adjust U eff so
as to fit the calculated band gap with an experimental one4. The second approach is mostly
adopted in our PP calculations. We want to comment on one point here. In our LDA + U
method based on the plane-wave expansion, because the U eff is nonzero only in a limited
(relatively small) region in real space, its actual value is usually larger than the estimation
made by another method like LMTO. As an example, in figure 4, we show the calculated
band gap as a function of U eff for SrTiO3. Comparing with experimental data, we obtained an
estimation of U eff ∼ 7.0 eV.

4 In the LDA + U method, the way of subtracting the double counting term is also not unique. The prescription
adopted in [17] has some analogy with Slater’s transition state as can be also seen in equation (3). This is a reason for
using the band gap as a guide to estimate Ueff .
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Figure 4. The calculated band gap in LDA + U method as a function of U eff for SrTiO3. The
experimental band gap is about 3.2 eV.

2.3. Virtual crystal approximation (VCA) for TMO

Doping or alloying in TMO has been regarded as a standard way to control the physical
properties of series of materials. The general formula for perovskite alloy systems can be
expressed as A1−xA′

xB1−yB′
yO3. A-sites are usually occupied by alkaline-earth or lanthanoid

elements, while B-sites are mostly occupied by transition-metal elements. There are two
standard ways to treat the alloy effects. One is the supercell method and the other is the
coherent-potential approximation (CPA) [30] based on the scattering theory. As the supercell
method requires a large unit cell and is applicable to some specific concentrations x and y in
practice, it is not easy to use this method to study a wide range of concentration. On the other
hand, while CPA is applicable to any concentration, the plane-wave technique is not suited to
this method. Therefore, we adopt a simpler approximation, i.e., a VCA for the alloy effect
on the A-sites. In most cases, the main role of the A-site elements is to donate their valence
electrons to the rest of the system and to control the occupation of the d bands of the B-site
elements. The valence states of the A-site elements are significantly far above the Fermi level.
In such a case, VCA can be a good approximation. On the other hand, the alloy effect on the
B-site cannot be treated by such a simple approximation as VCA. Therefore, in the present
article, we do not treat the B-site alloy systems. Yet, the PP approach has a nice feature in the
VCA as explained below and can treat many important A-site alloy systems.

In the VCA based on the PP, the alloy effects are taken into account by constructing
virtual atoms, which have an average PP constructed from the constituents. As PP describes
the scattering properties of an atom by treating the valence states as if they are the lowest
energy (pseudo-)atomic states, the VCA in this way can be applied to alloys consisting of
atoms even in different rows of the periodic table. This is a merit of the PP method compared
with the all-electron approach for which the VCA can be applied only to the alloys formed by
neighbouring elements in the same row.

To construct the VCA in PP scheme, first we generate the ionic PP V̂ PP
ion by unscreening

the screened potential V̂ PP
scr ,

V̂ PP
ion,α(r) = V̂ PP

scr,α(r) −
∫

ρv
α(r

′)
|r − r ′| dr ′ − µxc(ρ

v
α(r) + ρpc

α (r)) (4)

whereρ(r) is the charge density with superscripts v orpc denoting the valence part or the partial
core correction part. µxc is the exchange–correlation potential. The label α = (a, b, . . .) runs
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Figure 5. A comparison of calculated electronic DOS for the FM La0.5Sr0.5MnO3 with the cubic
structure. The solid curve is for the result obtained by VCA, while the dashed curve gives the result
by the supercell calculation.

over all constituent atoms of alloying sites. Here we consider two component alloy systems.
The virtual ionic PP can be obtained by mixing the unscreened ionic pseudopotentials,

V̂ PP
ion,x(r) = xV̂ PP

ion,a(r) + (1 − x)V̂ PP
ion,b(r) (5)

with x denoting the doping ratio. Then we solve the following Schrödinger equation self-
consistently for each orbital l to obtain the corresponding pseudo-wavefunction ϕl and eigen-
value εl . {

T + V̂ PP
ion,x +

∫
ρv
x (r

′)
|r − r ′| dr ′ + εxc(ρ

v
x (r) + ρpc

x (r))

}
|ϕl〉 = εl|ϕl〉 (6)

where T is the kinetic energy operator. The charge density should be obtained self-consistently
with the initial charge density given by,

ρv
x (r) = xρv

a (r) + (1 − x)ρv
b (r) (7)

ρpc
x (r) = xρpc

a (r) + (1 − x)ρ
pc

b (r). (8)

Finally, once we obtain the semi-local PP and the corresponding pseudo-wavefunction, we
follow the standard step to construct the Kleinman–Bylander type nonlocal PP.

In the above approach, we can use only one projector for each orbital because we need
to solve the Schrödinger equation self-consistently instead of getting the wavefunction by
inverting the Schrödinger equation with the fixed PP. This is a relatively easy approach, although
the restriction of one projector may lead to a little bad transferability.

The validity of our approach for the perovskite TMO systems with A-site alloying has been
carefully checked. Both total energy and magnetic exchange parameters have been calculated
and compared with supercell calculations. Quite good agreement can be found between them.
The calculated electronic structures in the VCA are also in good agreement with those by the
supercell calculation. As an example, in figure 5 we show the density of states (DOS) obtained
by two approaches for the FM La0.5Sr0.5MnO3 with the cubic perovskite structure. Actually
the calculated DOSs in the supercell scheme and in the VCA are almost identical around the
Fermi level.
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Figure 6. The phase diagram of La1−xSrxMnO3 in the plane of c/a and doping x obtained by the
total energy calculations [20]. The c/a ratio is varied with the corresponding experimental volume
fixed.

3. Examples demonstrating crucial roles of ODF

3.1. ODF-mediated phase control in La1−xSrxMnO3

The magnetic ordering can be indirectly controlled by the lattice distortion via ODF. Recently
Konishi et al [31] succeeded in realizing such control for the CMR manganites La1−xSrxMnO3

in the range of 0.3 � x � 0.5 by growing thin films on substrates with some different lattice
constants. This is a new way of controlling the phase of manganites through the control of
c/a. By changing c/a only from 0.97 to 1.06, the phase of La1−xSrxMnO3 takes a sequence
of A–AF, FM, C–AF states at around x = 0.5. However, except the FM state, experimental
assignment of the AF orderings (A-type, C-type and G-type) is indirect and is based on the
conjecture by analogy with the well known system Nd1−xSrxMnO3 [32].

We will demonstrate that this kind of phase control can be properly predicted by the first-
principles calculations [20]. Figure 6 shows the calculated phase diagram obtained by the total
energy analysis with GGA [16]. First let us pay attention to the region around c/a = 1.0. For
the lower doping, the phase diagram is dominated by FM phase; while for the heavy doping, it
is dominated by G-type AF phase. However, if we change c/a ratio, two other states, A-type
AF and C-type AF, appear and compete with FM and G-type AF states: for c/a < 1.0, A-type
AF state is stabilized while for c/a > 1.0, C-type AF state becomes stable. The theoretical
phase diagram agrees quite well with the experimental one. In other words, our theoretical
analysis gives a strong support to the experimentalists’ conjectures for the AF states.

Here we will mainly discuss the effect of tetragonal distortion of the lattice on the given
sequence of magnetic states. For example, if we look at x = 0.5, the system will undergo
phase transitions from A-type AF state to FM state and to C-type AF state with increasing c/a
ratio. We identify two basic mechanisms. First is the OO induced by the lattice distortion as
shown in figure 7. Since the eg bands are antibonding states of O(2p) and Mn(eg) orbitals, the
eg orbital extending along the elongated Mn–O bond will be preferentially occupied when the
tetragonal distortion is set in. Accordingly, the d3z2−r2 orbitals are more populated than the
dx2−y2 ones for c/a > 1 and vice versa for c/a < 1. This results in anisotropy of the FM
DE interactions: for the less than half-filled majority-spin eg-bands, the more (less) populated
are the orbitals, the stronger (weaker) are the DE interactions among these orbitals. Such
anisotropy will favour A–AF and C–AF spin structures for c/a < 1 and c/a > 1, respectively.
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Figure 7. The calculated charge distribution for the energy window with 0.6 eV width just below
the Fermi level for different magnetic structures. The different spin components (up and down) are
drawn with different grey tones. The Mn atoms sit at the corners of the cube, while oxygen atoms
(small spheres) sit at the edge centers.

Another mechanism is related with the distance-dependence of the effective d–d hopping
integrals (t) without appealing to the OO and is similar to the bandwidth dependence of
nearest neighbour exchange integral J1 discussed in [33]. By combining the FM–DE and
AF SE contributions, J1 can be expressed as J1 = αt − βt2 with the positively defined
parameters α and β. The situation realized in the band structure calculations corresponds
to the limit 2t > α/β and ∂J1/∂t < 0. Therefore, as t decreases (increases) when the
Mn–Mn distance increases (decreases), J1 is expected to be larger (smaller) in the direction
of tetragonal stretching (contraction). This will additionally enhance the tendencies towards
A–AF and C–AF spin orderings when c/a < 1 and c/a > 1, respectively.

3.2. Magnetic phase diagram of Ca2−xSrxRuO4

Both the magnetic and the structural instabilities are essential issues for the unconventional
superconductivity in Sr2RuO4 [22,34–38], which is the only example of a noncuprate layered
perovskite superconductor. It was first suggested that the Sr2RuO4 is close to the FM
instability [39] with strong FM spin fluctuations, which may naturally lead to a spin-triplet
p-wave pairing mechanism [39–42]. However, the recent observation [43] of sizable AF
incommensurate spin fluctuation, due to the Fermi surface nesting [44], indicates that more
careful studies are needed. As for the structural aspect, it was pointed out by experiments that
Sr2RuO4 is very close to the structural instability with respect to the RuO6 rotation [45]. With
such a situation, one may consider that three kinds of instabilities, superconducting, magnetic
and structural ones, may compete. Nevertheless, the correlation among those instabilities
has not been fully discussed. It was found recently [47] that the cleaved surface of this
material is reconstructed to form the c(2 × 2) structure which can be regarded as the frozen
RuO6 rotation mentioned above. This finding turns out to be crucial in the understanding
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of the angle-resolved photoemission measurement and has solved the puzzle in the Fermi
surface topology [46]. Furthermore, the density-functional calculation predicts that the surface
ferromagnetism is strongly stabilized by the structural reconstruction [47]. This prediction
suggests that the structural and magnetic instabilities cooperate rather than compete, although
the surface ferromagnetism has not been experimentally confirmed up to now.

On the other hand, the recent experimental studies on the very rich phase diagram of
Ca2−xSrxRuO4 [48] provide us with an opportunity to analyse the correlation between the
magnetism and the structure more extensively. With the Ca substitution for Sr, the system is
successively driven from the nonmagnetic (NM) two-dimensional (2D) Fermi liquid (x ∼ 2.0)
to a nearly FM metal (x ∼ 0.5), an antiferromagnetically correlated metal (0.2 < x < 0.5),
and finally an AF insulator (x < 0.2). Since the substitution is isovalent, the dominant effects
are the structural modifications due to the reduced ionic size of Ca compared with Sr. (The
ionic radii of Ca2+ and Sr2+ are 1.00 and 1.13 Å, respectively.)

To understand how and why the magnetism of Ca2−xSrxRuO4 is affected by structural
distortions, and more importantly how the magnetic instabilities are coupled with structural
instabilities in Sr2RuO4, we calculated a phase diagram of Ca2−xSrxRuO4 as shown in
figure 8 [21]. The calculations are based on GGA [16]. Our phase diagram can qualitatively
explain the experimental one of Ca2−xSrxRuO4, demonstrating the crucial roles of structural
distortions in the tuning of electronic and magnetic properties, and further supporting our
previous prediction for the surface [22]. Our results strongly suggest that, in Sr2RuO4, the
magnetic fluctuations can be significantly enhanced by the structural fluctuations, implying
the necessity of reconsidering the coupling mechanism in the bulk superconductivity.

From right to left of the phase diagram, first the RuO6 starts to rotate along the c-axis by up
to 12◦, and then with the 12◦ rotation being fixed, the RuO6 starts to tilt up to 12◦. The structural
analysis by the neutron scattering [49] allows us to make a one-to-one correspondence between
the structural changes, i.e. the horizontal axis of our phase diagram, and the doping level x
in Ca2−xSrxRuO4. Now, the basic tendency suggested by our phase diagram is that the RuO6

rotation will drive the system from a NM state to a FM state, while the subsequent tilting plus
the flattening of RuO6 will push the system to an AF region. This general tendency is quite
consistent with the experimental results. It should be noted that the rich experimental phase
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Figure 9. Calculated total energy per formula unit versus octahedron rotation angle for the surface
of Sr2RuO4 [22]. The curves for different magnetic states are all shifted to make energies of
nonrotated structures equal to zero.

diagram can be simply understood in terms of the close coupling between structural distortions
and magnetism. Another important aspect in our phase diagram is that the flattening of RuO6

is so important not only for the AF state but also for the FM state. This suggests that simply
by uniaxial pressure, the Sr2RuO4 can be driven from the NM state to a FM state.

The basic questions concerning our phase diagram are: (1) Why are the RuO6 rotation and
tilting correlated with the tendency to the FM and AF states? (2) Why is the RuO6 flattening
so important for the magnetic solutions? These questions can be understood in terms of the
strong coupling between the lattice and the magnetism through the ODF. The RuO6 rotation
couples mostly with the dxy orbital but not with the dyz, dzx orbitals because the pdπ type
hybridization between the O(1)-2p and the dxy states will be significantly reduced by the RuO6

rotation. The direct results of this are, first the narrowing of dxy band width and second the
downward shift of dxy band. As the latter brings the van Hove singularity, which is contributed
by the dxy orbital, closer to the Fermi level, both of the two results will enhance the DOS at the
Fermi level. Once tilting is additionally introduced, all of the t2g bands will become narrower.
This will enhance the nesting effect and enhance the AF instability. With the flattening of
RuO6 octahedron, the Ru–O bond length in ab-plane will increase, making all the three bands
of Ru-t2g states narrower (i.e. making the DOS at the Fermi level higher). This will favour
the FM solution. Another very important result of flattening is the orbital polarization. The
tetragonal distortion by the flattening will populate the dxy states and depopulate the dyz, dzx
states, shifting the nesting vector to the zone boundary. In this sense, flattening may favour
the commensurate AF state of the system. Furthermore, if flattening is combined with rotation
and tilting, it will induce AF SE by the following mechanism. As was already pointed out,
rotation, tilting and flattening of RuO6 reduce the d band width and populate the dxy orbital
preferentially. Therefore, if flattening becomes large enough, the d electron configuration will
be {dxy ↑, dyz ↑, dzx ↑, dxy ↓}. Then the hybridization between the occupied {dyz ↑, dzx ↑}
orbitals and unoccupied {dyz ↓, dzx ↓} ones will be the source of AF SE. The insulating AF
state of Ca2RuO4 is realized by such a mechanism.

It is for the same reason that our calculations predict the surface of Sr2RuO4 show strong
tendency towards FM ground state (see figure 9) [22]. The significant rotation (about 9◦) of
RuO6 on the surface was identified by LEED analysis. This rotation will enhance the tendency
to the FM state as discussed above.
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Figure 10. The optimized surface geometry, and the calculated (in GGA) charge and magnetization
density distributions around the oxygen vacancy for the energy window of 1.5 eV width just below
the Fermi level [24]. The upper row (a) is the case of SrO termination, while the lower one (b)
shows that of TiO2 termination. For TiO2 termination, the LDA + U (Ueff = 7.0 eV) result is
shown also. In this case, the charge and the magnetization distributions are identical, because only
the majority-spin split-off states are available in the energy window.

3.3. Spin and orbital polarization around oxygen vacancy on the surface of SrTiO3

SrTiO3 has been attracting intensive attention over a couple of decades because of the
various possible applications. It is widely used in materials science as substrate, due
to its very flat surfaces, which can be atomically controlled by chemical treatments [51].
Depending on stoichiometry and structure, the surface of SrTiO3 can be gas sensitive [52],
ferroelectric [53–56] and catalytically active [57]. Stoichiometric SrTiO3 (i.e., Sr2+Ti4+O2−

3 )
is an insulator with the Fermi level located within the charge transfer gap between oxygen 2p
and Ti 3d states [58]. If the oxygen vacancies exist on the surfaces, part of the Ti 3d states will
be occupied and therefore the electronic properties will be modified significantly.

There are several basic questions to be answered for the surface of SrTiO3. First, what
is the difference in the electronic structure between SrO and TiO2 terminated surfaces with
oxygen vacancy? Second, the partially occupied transition-metal 3d states are spin-polarized
in many cases. Is the local electronic structure induced by oxygen vacancy spin-polarized or
not? Thirdly, what are the roles of ODF?

To address all the above questions, we studied the (001) surfaces of SrTiO3 with oxygen
vacancies by the first-principles calculations [24]. We first discuss the results obtained by GGA.
We found that the partially occupied Ti 3d states show strong spin and orbital polarizations.
As for the spin degree of freedom, the FM solution has definitely lower energy than the NM
one for both SrO and TiO2 terminated cases by −99 and −14 meV, respectively, suggesting the
strong tendency toward spin-polarization of the defect states. On the other hand, the different
orbital pictures around the oxygen vacancy on the SrO and TiO2 terminated surfaces suggest
distinguishable STM images of the two cases. Figure 10 shows the calculated geometry, the
charge and spin-polarization distributions around the oxygen vacancy for two terminations. For
the SrO terminated surface, the loss of the apical oxygen will mostly affect the Ti site just below
the vacancy. In this case, the loss of the strong pd hybridization along the surface normal, taken
as z direction, will pull the d3z2−r2 state which is the pd antibonding state down significantly.
The charge distribution shown in figure 10 clearly demonstrates that the occupied Ti 3d states
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have strong d3z2−r2 character. However, the TiO2 terminated surface is quite different, in the
sense that there are two nearest neighbour Ti sites around the oxygen vacancy. The effects of
vacancy will be shared by the two neighbouring surface Ti sites. If we take the x axis as the Ti–
O bond direction, the partially occupied Ti 3d states are mostly the dxz orbitals. For the perfect
TiO2 terminated surface, the dyz and dzx states, which are degenerate, are lower in energy than
the dxy state due to the loss of the pdπ hybridization with the ligand oxygen from another
side of the surface. However, after the formation of the oxygen vacancy, the dzx states at the
neighbouring Ti atoms are further lowered due to another loss of the pdπ hybridization. The
ordering in ODF is clearly shown in the charge and magnetization distributions in figure 10.
Finally we make some comments on the problems in GGA for the TiO2-terminated surface
and discuss the improvements by the LDA + U method with U eff = 7.0 eV. As was already
mentioned this value of Ueff is obtained to reproduce the bulk band gap of SrTiO3. In GGA,
although the oxygen vacancy produces the spin polarization at the neighbouring Ti sites, the
system becomes metallic with the Fermi level lying in both the majority and minority spin Ti
d bands. This is inconsistent with the measurement by the scanning tunnelling spectroscopy
(STS) [59]. With the LDA + U method, a split-off gap state only for the majority spin appears
in the band gap about 1.5 eV below the Fermi level and the system becomes insulating [24].

4. Summary

With all those examples discussed so far, we have demonstrated that the magnetism in TMO
is strongly correlated with the structural distortions. By controlling the structural distortion,
we can control the magnetic state of the system. Conversely, by controlling the magnetic state
of the system, we can affect the structural distortion. We have emphasized that the coupling
between magnetism and lattice distortion is mediated by ODF. As the direct experimental
observation of the ODF is still not easy, theoretical analysis should play an important role.
The recent development of first-principles calculations based on the density-functional theory
provides us with a powerful tool to study the physics associated with ODF in TMO.
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[26] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16 223
[27] Davidson E R 1978 J. Comput. Phys. 17 87

Liu B Report on the Workshop Numerical Algorithms in Chemistry: Algebraic Methods ed C Moler and I Shavitt
p 49

[28] Sawada H, Morikawa Y and Terakura K 1997 Phys. Rev. B 56 12 154
[29] Solovyev I V and Dederichs P H 1994 Phys. Rev. B 49 6736
[30] Soven P 1967 Phys. Rev. 156 809

Taylor D W 1967 Phys. Rev. 156 1017
[31] Konishi Y, Fang Z, Izumi M, Manako T, Kasai M, Kuwahara H, Kawasaki M, Terakura K and Tokura Y 1999

J. Phys. Soc. Japan 68 3790
[32] Kuwahara H, Okuda T, Tomioka Y, Asamitsu A and Tokura Y 1999 Phys. Rev. Lett. 82 4316
[33] Solovyev I V and Terakura K 1999 Phys. Rev. Lett. 82 2959
[34] Imai T, Hunt A W, Thurber K R and Chou F C 1998 Phys. Rev. Lett. 81 3006
[35] Mackenzie A P et al 1998 Phys. Rev. Lett. 80 161

Mackenzie A P et al 1998 Phys. Rev. Lett. 80 3890
[36] Luke G M et al 1998 Nature 394 558
[37] Riseman T M et al 1998 Nature 396 242
[38] Laube F et al 2000 Phys. Rev. Lett. 84 1595
[39] Rice T M and Sigrist M 1995 J. Phys.: Condens. Matter 7 L643
[40] Mazin I I and Singh D J 1997 Phys. Rev. Lett. 79 733
[41] Tewordt L 1999 Phys. Rev. Lett. 83 1007
[42] Ishida K et al 1998 Nature 396 658
[43] Sidis Y et al 1999 Phys. Rev. Lett. 83 3320
[44] Mazin I I and Singh D J 1999 Phys. Rev. Lett. 82 4324
[45] Braden M and Reichardt W 1998 Phys. Rev. B 57 1236
[46] Damascelli A, Lu D H, Shen K M, Armitage N P, Ronning F, Feng D L, Kim C and Shen Z-X 2000 Phys. Rev.

Lett. 85 5194
[47] Matzdorf R et al 2000 Science 289 746
[48] Nakatsuji S and Maeno Y 2000 Phys. Rev. Lett. 84 2666

Nakatsuji S and Maeno Y 2000 Phys. Rev. B 62 6458
[49] Friedt O et al 2000 Preprint cond-mat/0007218
[50] Mazin I I and Singh D J 1997 Phys. Rev. B 56 2556
[51] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonazawa T, Yoshimoto M and

Koinuma H 1994 Science 266 1540
[52] Bieger T, Maier J and Waser R 1992 Sensors. Actuators B 7 763
[53] Ravikumar V, Wolf D and Dravid V P 1995 Phys. Rev. Lett. 74 960
[54] Zhong W and Vanderbilt D 1995 Phys. Rev. Lett. 74 2587
[55] Itoh M, Wang R, Inaguma Y, Yamaguchi T, Shan Y and Nakamura T 1999 Phys. Rev. Lett. 82 3540
[56] Bichel N, Schmidt G, Heinz K and Müller K 1989 Phys. Rev. Lett. 62 2009
[57] Mavroides J G, Kafalas J A and Kolisar D F 1976 Appl. Phys. Lett. 28 241
[58] Cardona M 1965 Phys. Rev. A 651 140
[59] Tanaka H, Matsumoto T, Kawai T and Kawai S 1993 Japan. J. Appl. Phys. 32 1405


